This 構成するs a linear mapping of a point in 2D to another
point in 2D.
The matrix defined by this structure 構成するs a linear
mapping of a point in 2D to another point in 2D. In contrast to
the ::com.sun.星/主役にする.geometry.AffineMatrix2D, this
matrix does not 含む any translational 構成要素s.
A linear mapping, as 成し遂げるd by this matrix, can be written out
as follows, where xs
and ys
are the source, and
xd
and yd
the corresponding result 調整するs:
xd = m00*xs + m01*ys;
yd = m10*xs + m11*ys;
Thus, in ありふれた matrix language, with M 存在 the
Matrix2D and vs=[xs,ys]^T, vd=[xd,yd]^T two 2D
vectors, the linear mapping is written as
vd=M*vs. Concatenation of 変形s 量s to
multiplication of matrices, i.e. a 規模ing, given by S,
followed by a rotation, given by R, is 表明するd as vd=R*(S*vs) in
the above notation. Since matrix multiplication is associative,
this can be 縮めるd to vd=(R*S)*vs=M'*vs. Therefore, a 始める,決める of
連続した 変形s can be 蓄積するd into a 選び出す/独身
Matrix2D, by multiplying the 現在の 変形 with the
付加 変形 from the left.
予定 to this transformational approach, all geometry data types are
points in abstract integer or real 調整する spaces, without any
physical dimensions 大(公)使館員d to them. This physical 測定
部隊s are typically only 追加するd when using these data types to
(判決などを)下す something の上に a physical 生産(高) 装置, like a 審査する or a
printer. Then, the total 変形 matrix and the 装置
決意/決議 決定する the actual 測定 部隊.